Temporal Information Extraction

Xiao Ling University of Washington Joint work with Dan Weld

Motivation

• Traditional Relation Extraction

This talk: Temporal Information Extraction

• Input: raw text, e.g.

Steve Jobs revealed the iPhone in 2007.

• Output:

events annotated with bounds on endpoints <pre

* This work focuses on one sentence at a time

Outline

- Motivation
- Previous Work
- TIE
- Experiments
- Conclusion

TempEval [Verhagen et al, 2007]

In most countries of the world **recovery** from the Great Depression began between late **1931**...

TempEval [Verhagen et al, 2007]

In most countries of the world **recovery** from the Great Depression began between late **1931**...

TempEval [Verhagen et al, 2007]

In most countries of the world **recovery** from the Great Depression began between late **1931**...

Transitivity (Yoshikawa et al., 2009)

• Restricted to the elements in test data

• Intra-sentence transitivity not fully exploited

Transitivity cont.

(Verhagen et al, 2007), (Yoshikawa et al., 2009)

Restrict the relation set to
 {BEFORE, AFTER, OVERLAP}

OVERLAP is ambiguous!

Point-based relations: B OVERLAP C => A ? C

p1 < p2, p2 < p3 => p1 < p3

Contributions

- System TIE (Temporal Information Extractor)
 - Intra-sentence transitivity
 - high level features
- Temporal Entropy

a new metric for measuring tightness of the bounds

Outline

- Motivation
- Previous Work
- TIE
 - Architecture
 - Learning
 - Inference
- Experiments
- Conclusion

Markov Logic Networks

- A Markov Logic Network (MLN) is a set of pairs (F_i, w_i) where
 - F_i is a formula in first-order logic

 $-\mathbf{w}_{i}$ is a real number as the γ

of true groundings of **F**_i

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_i \cdot N_i(x)\right)$$

Annotating Event and Time

[Verhagen et al,2005]

In most countries of the world, recovery from the Great Depression began between late 1931 and early 1933.

In most countries of the world, recovery^{e1} from the Great Depression^{e2} began^{e3} between late 1931^{t1} and early 1933^{t2}.

Dependency Parsing

[De Marneffe et al,2006]

In most countries of the world, recovery^{e1} from the Great Depression^{e2} began^{e3} between late 1931^{t1} and early 1933^{t2}.

Dependency: prep_between(began, 1931)

Feature: prep_between(e3, t1)

Syntactic

Semantic Role Labeling

[Koomen et al,2005]

In most countries of the world, recovery^{e1} from the Great Depression^{e2} began between late 1931^{t1} and early 1933^{t2}.

In most countries of the world, recovery^{e1} from the Great Depression^{e2} began^{e3} between late 1931^{t1} and early 1933^{t2}.

Feature: srl_after(${}^{\lhd}$ e3, ${}^{\lhd}$ t1), srl_after(t2 ${}^{\triangleright}$, e3)

Summary of Features

• Event and Time attributes

- value(t1, "1933"), tense(e1, "PAST")

• Syntactic Dependency

- prep_between(e3, t1)

• SRL Features

 $- srl_after(< e3, < t1)$

Markov Logic Networks

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1, p2)

point(x)
$$\in \{ \lhd x, x^{\triangleright} \}$$

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1,p2)

point(x)
$$\in \{ \lhd x, x^{\triangleright} \}$$

prep_before(e_1 , t_1) => after(${}^{\triangleleft}t_1$, $e_1 {}^{\triangleright}$)

John left^{e1} before 6 pm^{t1}.

point(x)
$$\in \{ \triangleleft x, x^{\triangleright} \}$$

prep_before(e₁, t₁) => after(${}^{\triangleleft}t_{1}, e_{1}^{\triangleright}$) prep_before(e₁, t₁) => after(${}^{\triangleleft}t_{1}, {}^{\triangleleft}e_{1}$) prep_before(e₁, t₁) => after(t₁^{\triangleright}, e_{1}^{\triangleright})

John left^{e1} before 6 pm^{t1}.

point(x)
$$\in \{ \triangleleft x, x^{\triangleright} \}$$

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t)) value(t₁, "future") ^ tense(e₁, "past") => after($\triangleleft t_1, e_1^{\triangleright}$) srl_after(p1, p2) => after(p1,p2)

point(x)
$$\in \{ \triangleleft x, x^{\triangleright} \}$$

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1, p2)

point(x)
$$\in \{ \lhd x, x^{\triangleright} \}$$

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1,p2)

point(x)
$$\in \{ \triangleleft x, x^{\triangleright} \}$$

MLN: Learning

- Training set: TimeBank
 - manually labeled news articles
 - 1456 pairs of temporal elements

dep(x,y) => after(point(x),point(y))
value(t,+v) ^ tense(e, +s) => after(point(e),point(t))
srl_after(p1, p2) => after(p1,p2)
after(p1, p2) ^ after(p2, p3) => after(p1, p3)

MLN: Learning

- Training set: TimeBank
 - manually labeled news articles
 - 1456 pairs of temporal elements

Learned weights for: dep(x,y) => after(point(x),point(y))
value(t,+v) ^ tense(e, +s) => after(point(e),point(t))
srl_after(p1, p2) => after(p1,p2)
after(p1,p2) ^ after(p2, p3) => after(p1, p3)

MLN: Learning

- Training set: TimeBank
 - manually labeled news articles
 - 1456 pairs of temporal elements

dep(x,y) => after(point(x),point(y))
value(t,+v) ^ tense(e, +s) => after(point(e),point(t))
manually srl_after(p1, p2) => after(p1,p2)
after(p1,p2) ^ after(p2, p3) => after(p1, p3)

MLN: Inference

• MC-SAT (Poon et al, 2006):

marginal probabilities

over relations of all possible point pairs

– predictions

by thresholding the probabilities

Outline

- Motivation
- Previous Work
- TIE
- Experiments
- Conclusion

Experiments

- Dataset (From Wikipedia)
 - 45 sentences:
 - 151 events and 56 times
 - 644 point pairs in total
- Labeling all point-wise constraints
 - 2 people and a 3rd person to resolve conflicts

Comparison Systems

- (Pasca, 2008): lexico-syntactic patterns
- TARSQI: hand-code rules + maxent classifier
- SRL: interpreting tmp args based on the preps

Experiments – PR Curves

Ablation test: Transitivity [TIE-trans]

Ablation test: SRL [TIE-srl]

12/23/2010

Ablation test: Both [TIE-srl-trans]

PR: are they predicted?
 after(p₁, p₂), after(p₃, p₂), after(p₂, p₄), after(p₁, p₃)

• **PR**:

after(p_1 , p_2), after(p_3 , p_2), after(p_2 , p_4), after(p_1 , p_3)

V.S.

after(p_1 , p_2), after(p_3 , p_2), after(p_2 , p_4), after(p_1 , p_3)

• **PR**:

after(p_1 , p_2), after(p_3 , p_2), after(p_2 , p_4), after(p_1 , p_3) $p_4 < p_2 < p_1$ v.s. after(p_1 , p_2), after(p_3 , p_2), after(p_2 , p_4), after(p_1 , p_3) $p_4 < p_2 < p_3$ Which is tighter?

 $p \in [p^{L}, p^{U}]$ $1931 < \operatorname{recovery} < 1933$ $TE(p) = \log(p^{U} - p^{L})$ $TE(\operatorname{recovery}) = \log(3 \text{ years in seconds})$

Start and Ending points of Events

Conclusion

- TIE
 - Input: raw text
 - **Output**: events annotated with bounds on endpoints
- Exploits transitivity & high-level features
- Outperforms alternative state-of-the-art systems
- Temporal Entropy

a new measure for tightness of the bounds

Thanks! Questions?

Future directions

• Improve Event-Event predictions

hard to predict w/o knowing the semantics
 e.g. The meeting has been cut off for two years.
 The meeting has been running for two years.

• Inter-sentence inference

- e.g. adjacent sentence transitions, event coref, etc.