
Synthesizing Union Tables from the Web

Xiao Ling∗

xiaoling@cs.washington.edu
University of Washington

Alon Halevy and Fei Wu and Cong Yu
{halevy,wufei,congyu}@google.com

Google Research

Abstract
Several recent works have focused on harvesting
HTML tables from the Web and recovering their
semantics [Cafarella et al., 2008a; Elmeleegy et al.,
2009; Limaye et al., 2010; Venetis et al., 2011].
As a result, hundreds of millions of high quality
structured data tables can now be explored by the
users. In this paper, we argue that those efforts only
scratch the surface of the true value of structured
data on the Web, and study the challenging prob-
lem of synthesizing tables from the Web, i.e., pro-
ducing never-before-seen tables from raw tables on
the Web. Table synthesis offers an important se-
mantic advantage: when a set of related tables are
combined into a single union table, powerful mech-
anisms, such as temporal or geographical compar-
ison and visualization, can be employed to under-
stand and mine the underlying data holistically.
We focus on one fundamental task of table synthe-
sis, namely, table stitching. Within a given site,
many tables with identical schemas can be scat-
tered across many pages. The task of table stitching
involves combining such tables into a single mean-
ingful union table and identifying extra attributes
and values for its rows so that rows from different
original tables can be distinguished. Specifically,
we first define the notion of stitchable tables and
identify collections of tables that can be stitched.
Second, we design an effective algorithm for ex-
tracting hidden attributes that are essential for the
stitching process and for aligning values of those
attributes across tables to synthesize new columns.
We also assign meaningful names to these synthe-
sized columns. Experiments on real world tables
demonstrate the effectiveness of our approach.

1 Introduction
Tables on the Web have been recognized as an important
source of structured data and have attracted a number of re-
search efforts from both academia and industry [Cafarella et

∗This work was done during the first author’s internship at
Google.

al., 2008b; Gupta and Sarawagi, 2011; Wang et al., 2012].
All of those works extract tables individually, and focus on
annotating the tables for applications such as visualization,
search, and knowledge base enrichment. While understand-
ing raw tables independently is important, there is even more
value in consolidating individual tables.

As an example, consider the set of tables at the Public
School Review Site1. They record the statistics of schools
all over the USA, as shown in Figure 1. For human readabil-
ity, the site designers have fragmented the information into
smaller tables where each table corresponds to a subset of the
schools. However, a user might be interested in a different
organization of the schools, such as finding all schools with
over 500 students. Without a holistic view of the original
table of all schools, such a task is nearly impossible to ac-
complish. Furthermore, realizing that these tables are part of
a bigger whole can enable a table search engine to provide
much more advanced utilities such as visualizing the schools
by states or school types.

This example demonstrates the power of table synthesis,
i.e., combining raw tables on the Web to produce union ta-
bles that are more valuable than the sum of those individual
tables. In this paper, we provide a first step to the solution
of this novel problem. We consider the problem of table
stitching: combining multiple tables on the same site in the
same schema that can be considered parts of a larger union ta-
ble. Even this first step raises challenging technical problems.
First, we must correctly discover tables that can be unioned.
Second, we need to stitch the tables properly. Specifically,
simply concatenating raw tables together will lead to a table
that contains inconsistent data. In the example site shown in
Figure 1, schools from different locations may have the same
name. To properly combine them, we must recover their lo-
cations from the page context (e.g., the page title, or text sur-
rounding the table) and add a new column in the table to show
this geographic information. In our example, the ideal stitch-
ing result is shown on the right panel of Figure 2.

In this paper, we describe algorithms for finding stitch-
able/unionable tables, recovering the hidden attributes, and
assigning them meaningful column names. Our main contri-
butions are the following:

• We introduce the table stitching problem whose goal is

1http://www.publicschoolreview.com/

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2677

Figure 1: Screenshots of the Public School Review Website.

Town School # Students Grades

Adams Berkshire Arts And 216 7-12

Anoka Transition Plus High 206 12

Town School # Students Grades

Alexandria Northside Adolescent 6 6-12

Andover Bridges High School 91 7-12

Dalton Wahconah Regional 628 9-12

Town School # Students Grades

Bentonville Bentonville High School 3333 9-12

Decatur Decatur High School 120 9-12

...	 	

...	 ...	

Benton County, AR
Public Schools |
PublicSchoolReview

Berkshire County, MA
Public Schools |
PublicSchoolReview

Minnesota Special
Education Schools |
PublicSchoolReview

Town School # Students Grades Hidden Attribute 1
(type: location)

Hidden Attribute 2
(type: school_category)

Bentonville Bentonville High 3333 9-12 Benton County, AR Public Schools

Decatur Decatur High School 120 9-12 Benton County, AR Public Schools

Adams Berkshire Arts And 216 6-12 Berkshire County, MA Public Schools

Cheshire Hoosac Valley High 692 7-12 Berkshire County, MA Public Schools

Dalton Wahconah Regional 628 9-12 Berkshire County, MA Public Schools

Alexandria Northside Adolescent 6 7-12 Minnesota Special Education Schools

Anoka Transition Plus High 206 12 Minnesota Special Education Schools

...

Context	

Tables	

Table	
S/tching	

Figure 2: Table stitching. (Left) Raw tables and their context. (Right) An ideal synthesized table from the raw tables.

to structurally organizing individual tables with neces-
sary context.
• We describe a segment-based multiple sequence align-

ment algorithm for extracting hidden table attributes
from the table context, where each table context is con-
sidered as a word sequence. Given candidate segments
from different heuristics as input, the algorithm seeks an
optimal alignment of multiple sequences and determines
the proper segmentations of those sequences.
• We describe techniques for giving the newly extracted

attributes meaningful names.
• We present a set of experiments that show: 1) our

method effectively extracts better hidden attributes than
baseline methods; 2) a combination of candidate seg-
ments suggested by different heuristics works the best;
and 3) we are able to automatically label extracted at-
tributes with a set of predefined class labels with reason-
able quality.

We define the terminology and present an overview of the
table stitching problem in Section 2. Section 3 describes the
core of our technique, namely extracting hidden attributes
from table contexts. Together with the technique for as-
signing meaningful column names for those attributes (which
we briefly describe within the experimental evaluation), this
technique allows us to provide a first-cut solution for table
synthesis. Experimental results are presented in Section 4,
followed by a discussion on related work in Section 5. Fi-
nally, Section 6 concludes and proposes some future direc-
tions.

2 Overview
Assume a corpus of tables T extracted from the same site.
Our goal is to build a pipeline for stitching tables in T into a

set of union tables. This pipeline consists of three major com-
ponents: the stitchable table identifier, the hidden attribute
extractor and the table stitcher.
Stitchable Tables Identifier: To identify a set of stitchable
tables from a corpus T , we rely on the header hT of a table
T 2. We define stitchable tables as follows:

Definition (Stitchable Tables): Two tables T1 and T2 are
stitchable if their headers hT1

and hT2
are semantically equiv-

alent regardless of the ordering, hT1
≡ hT2

. Specifically, for
all attribute names hT1

(i) in hT1
there exists one and only

one attribute name hT2(j) in hT2 that has the same meaning
of hT1(i) and the reverse also holds. Note that the stitchable
property is transitive: if T1 and T2 are stitchable and so are
T2 and T3, then T1 and T3 are stitchable.

We can potentially define semantic equivalence based on
non-trivial notions such as synonymy, acronyms or many
other semantic-preserving variations. For simplicity, how-
ever, we simply consider semantic equivalence as two sets of
attribute names having exactly the same set of string values.
Our stitching techniques are orthogonal to stitchable tables
identification, thus we leave advanced identifiers for future
work. Once identified, all stitchable tables are grouped to-
gether for stitching. Because of the transitive nature, each
table can only belong to one stitchable group.
Hidden Attribute Extractor: For each stitchable group
G = {T1, · · · , Tn}, our goal is to union the element tables
without creating semantic ambiguities. As mentioned above,
two schools from different counties could have exactly the
same name. Information that can be used to disambiguate

2hT is a set of string values that are the column names of T .
In the example shown in Figure 2, they are “Town”, “School”, “#
Students” and “Grades”.

2678

those rows are often hidden within the table context. The
challenge, however, is that such information is usually pre-
sented as unstructured natural language context on the page—
we need to extract, as precisely and concisely as possible, a
set of structured hidden attributes mT from such context to
make each table distinguishable within the group. The set of
hidden attributes mT is represented as an ordered list of val-
ues, {mT

1 , · · · ,mT
MG
}, where MG is the number of hidden

attributes for the group. Note that we are making the assump-
tion that all tables within the same group have the same set
of hidden attributes. If a particular attribute is missing from a
table, we can simply assign it null for that table.

Table Stitcher: The final step is to stitch the tables in the
same group. For each table T in a group G, its induced at-
tributes mT will be appended to each tuple in T . The aug-
mented tables are then simply concatenated together. Those
induced attribute values, however, are often difficult to under-
stand and leverage by applications because of the lack of at-
tribute names on the newly created columns. To enrich those
hidden attributes, we leverage techniques inspired by [Venetis
et al., 2011], in which we match the values in the cells to a
database of isA relations [Pasca and Van Durme, 2008]. If
a significant number of values in a column get mapped to a
common class in the isA database, we use the class name as
the attribute name. We discuss the effectiveness of this simple
approach using empirical results in Section 4.3.

3 Hidden Attribute Extraction
In this section, we focus on the main technical challenge of
table stitching: extracting hidden attributes for the tables from
unstructured context on the page. We discuss the sources of
context (Section 3.1) and the techniques of extracting the im-
plicit attributes (Section 3.2). We also describe a few heuris-
tics to provide candidate segmentations that are crucial for the
extraction (Section 3.3).

3.1 Sources of the Context
The hidden attributes may be embedded in different sources
of context. For example,

• Web page title: A title is used to succinctly describe
the main content of a Web page with necessary details.
When the main content of a Web page is a table, its title
is often useful for the extraction.

• Text surrounding the table: The description of a table
often appears in text before the table3. We can extract
such text by looking for the closest text node to the table
in the page’s DOM tree.

In addition, Web page URLs, HTML caption tags, and
navigational menus on Web pages can also serve as useful
sources of context, and our technique described below could
similarly apply to those. As an initial study, we chose to focus
on the title and surrounding text first, which are empirically
the two most important sources.

3The description also appears after the table but in the initial ex-
periments we empirically observe little useful text after the table.

3.2 Extraction by Segmentation and Alignment
The context of a table is simply a piece of unstructured text,
thus the main challenge is to accurately identify the set of
hidden attributes from those sequences and align them across
all tables in the group so that the values are semantically
coherent. Note that many attribute values are presented as
phrases, instead of isolated tokens. For instance, the hidden
attribute “Benton County, AR” have the most semantic value
only when all three tokens are present: individual tokens such
as “Benton” or “County” are not useful, while the token “AR”
represents too large an area.

We tackle this task as a sequence labeling problem [Laf-
ferty et al., 2001] where the text is represented as a sequence
of n tokens T = 〈t1, . . . , tn〉. If a segment (i.e., a consecu-
tive subsequence of tokens), represents a meaningful phrase,
it will be labeled as a useful attribute value. However, our
problem is different from traditional sequence labeling prob-
lem since the extracted segments for different tables in the
same group need to be aligned so that they can be filled into
the implicit columns of the resulting union table.

Our solution is inspired by a similar problem in computa-
tional biology, namely finding common genetic motifs from
different DNA sequences [Gusfield, 1997]. To identify ge-
netic mutations within a group of individuals, scientists com-
pare those individuals’ DNA sequences at the same time us-
ing the Multiple Sequence Alignment (MSA) technique. The
context of our tables can be considered as the DNA se-
quences, and thus we can adapt the MSA technique to identify
and align useful hidden attribute segments.

However, there are a few further challenges. First, MSA
is not directly applicable. In DNA sequence alignment, the
basic unit for alignment is individual nucleobases, namely A,
T, C and G. In our case, the segments are the basic units, but
we only have tokens as input. We have to solve the segmen-
tation and the alignment problem holistically. Second, we do
not have enough training data to apply any existing super-
vised segmentation method. It is extremely hard to manually
label table context data from the whole Web since each site
has different characteristics. Therefore, we turn to unsuper-
vised methods. In particular, we design a suite of segmen-
tation heuristics. Each heuristic captures some characteris-
tics of the hidden attributes, but may miss others. However,
the heuristics work surprisingly well collectively. More con-
cretely, to select the segments, we adopt the following strat-
egy. If segments by the a particular heuristic tend to align
across sequences, then that particular heuristic is more likely
to be correct. We next introduce the segment-based multiple
sequence alignment method. (The heuristics for generating
candidate segments will be detailed in Section 3.3.)

Before diving into the details of alignment of n sequences,
we first look at the pairwise case when n = 2 (Algorithm
1). We have two sequences T1 and T2 (we abuse the symbol
T here to also represent table context). Their candidate seg-
ments (S1 and S2 respectively, where each element segment
is represented by begin and end token positions) are gener-
ated by several heuristic. In addition, empty segments are
added to allow null values (i.e., gaps) for alignment. Simi-
lar to other dynamic programming algorithm, we divide the
whole problem into subproblems. How well the segments

2679

from each sequence align depends on how well these two seg-
ments match and how well the subsequences immediately be-
fore each segment are aligned. Let |T1| = n1 and |T2| = n2.
We maintain a chartC of a size (n1+1)·(n2+1), where each
chart entry C(i, j)4 stores the score for the best alignment be-
tween the subsequences T 1...i

1 and T 1...j
2 , as well as the last

aligned segment for each subsequence. The algorithm runs
two outer loops ranging from the smallest subproblems to the
final whole problem. At each subproblem (i, j), we enumer-
ate all pairs of the candidate segments that end with token T i

1

and T j
2 respectively. Note that Si

l , l ∈ [1, 2], is defined as a
set of candidate segments from Sl that end at T i

l . For each
pair, a segment matching score is computed as follows:

score(s1, s2) =

λh if both s1 and s2 are generated

by the same heuristic h;
λgap if s1 or s2 is an empty segment;
0 otherwise.

(1)
The sum of this segment matching score and the best align-
ment score of the immediate previous subproblem is used to
update the chart entry.

C(i, j)← max(C(i, j), score(s1, s2)+C(i−|s1|, j−|s2|))
(2)

In the end, we can extract the aligned segments by tracing
back from the chart entry C(n1, n2).

Input: Two sequences of tokens T1 and T2 of size n1
and n2 and two sets of candidate segments S1

and S2 respectively.
Output: The best alignment of segments in T1 and T2.
Initialization: A chart C of size (n1 + 1) · (n2 + 1).
for i← 0 to n1 do C(i, 0) = i× λgap;
for j ← 1 to n2 do C(0, j) = j × λgap;
for i← 1 to n1, j ← 1 to n2 do

for s1 ∈ Si
1, s2 ∈ Si

2 do
Update the chart at C(i, j) according to Eq. 2 ;

end
end

Algorithm 1: Pairwise Segment Alignment

In principle, we can use dynamic programming in a similar
fashion for multiple (n > 2) sequences to compute an optimal
sum-of-pairs score, where the optimal alignment will have
the best score summing over all pairs of pairwise alignment
scores. Unfortunately, these computations are exponential in
the number of sequences. Previous literature has proved that
finding the optimal MSA when the number of sequences is
a variable is NP-complete [Wang and Jiang, 1994]. There-
fore, we approximate the solution by iterative pairwise align-
ment (similar to [Barzilay and Lee, 2003]). In particular, we
maintain a profile of current pairwise alignment which can
also be viewed as a sequence. Each element of this pseudo-
sequence is, instead of a single token, a distribution of dif-
ferent segments in this alignment slot. When aligning with

4We use C(i, j) to represent both the chart entry and the align-
ment score for that entry.

another original sequence, the algorithm remains the same
except that the score function is overloaded for what we
call a profile slot. Specifically, a profile slot ps is a set of
segment-probability pairs, {(si, pi)}, and its alignment score
with a segment sj is defined as a weighted sum of the scores
between each segment in the slot and the segment sj :

score(ps, sj) =
∑

(si,pi)∈ps

pi · score(si, sj) (3)

Finally we can recover the aligned segments from the pro-
file by reading each slot. We further post-process the results
by filtering out useless segments if they do not provide dis-
tinguishing information for the stitched tables. Specifically,
a slot will be removed if it meets two conditions: 1) all the
segments of this slot have the same value; and 2) the value
cannot be used as hidden attribute labels. The first condi-
tion rules out the slots such as preprosition words or website
names that are not specific to the tables. However, a constant
value sometimes could be used as a hidden attribute label, e.g.
a slot with a constant value “Area:” would be an appropriate
attribute label for the slot next to it. To prevent a reason-
able attribute label from being removed, we further check if
the value is present in a pre-existing attribute label database
where the string values are ordered by the numbers of their
appearances in the table headers from a corpus of millions of
WebTables ([Cafarella et al., 2008b]5).

3.3 Heuristics for Candidate Segments
We now discuss how to generate candidate segments via sev-
eral heuristics. We adopt three diverse heuristics that treat the
text in different ways ranging from purely syntactic to seman-
tic interpretations.
Punctuation/Tag Separators: When pieces of text are not
organized in a grammatical sentence on Web pages, they are
either separated by obvious punctuations, e.g., commas, ver-
tical bars, or highlighted by different HTML styles, e.g. font
colors, font size. In the first case, we use the segments of
tokens between two punctuation marks. For style highlights,
the HTML tags are sufficient for the segmentation.
Longest Common Subsequences (LCS): Assuming some
contextual texts are automatically generated using templates,
another heuristic is first detecting the common segments from
the context and use them to separate the larger sequence.
The remaining segments that have different values across se-
quences are extracted as the hidden attribute segments. This
problem has long been approached as Longest Common Sub-
sequences where each subsequence is a common segment in
our context as a separator. We start by comparing a pair of
sequences of tokens, which can be efficiently solved by dy-
namic programming [Bergroth et al., 2000]. The method pro-
ceeds by iteratively and greedily comparing to the next se-
quence for LCS. Note that an LCS problem can be seen as
a degraded MSA problem with the tokens being the align-
ing elements and the scoring function being binary on string
matches (1 for the matches).

5We re-build the attribute database from our own Web table cor-
pus and only consider the top 5K frequent attribute names.

2680

Wikification: Wikification [Milne and Witten, 2008; Rati-
nov et al., 2011] is a technique of linking words or phrases
in any text to a corresponding Wikipedia article. If a segment
can be wikificated, it will likely to be meaningful and useful
for understanding the table. We applied a homegrown wiki-
fication tool to all the contextual text and extracted the seg-
ments identified as Wikipedia entities as candidate segments
for alignment.

4 Experimental Evaluation
We present experiments demonstrating the effectiveness of
our techniques for hidden attribute extraction and alignment
(Section 4.2), followed by experiments on labeling the ex-
tracted attribute columns (Section 4.3).

4.1 Data Set
We obtained a corpus of 130 million Web tables that were
filtered from a collection of 14 billion raw HTML tables
crawled from the Web. From the corpus, we performed the
simple stitchable table identification by grouping the tables
based on their sites and the automatically detected header
rows. For the experiments, we sampled 20 large groups,
each of which has more than 1000 tables, from 10 different
websites6. For each group, we further sampled 10 individ-
ual tables for evaluation, which is conducted based on golden
attribute values obtained through human evaluators judging
from the table context.

4.2 Hidden Attribute Extraction and Alignment
In this section, we investigate the quality of hidden attributes
extraction and alignment. We perform the quality analysis
from two perspectives, cell-wise accuracy and column-wise
accuracy, where the former evaluates the extraction while the
latter evaluates the alignment. We also empirically show that
different heuristics for segmentation are complementary and
work the best in concert.

Methodology: We evaluate our approach by comparing dif-
ferent combinations of candidate segments as described in
Section 3.3. The parameters in Eq. 1 are determined via a
grid search where each parameter can vary from 0.1 to 1.0 in
an increment of 0.1. We report the performance numbers via
a leave-one-out experiment.

Evaluation Metrics: For cell-wise accuracy, we evaluate
how accurate the identified segments are. Adopting the stan-
dard Precision/Recall/F1 measures, we deem a predicted seg-
ment as a true positive (TP) if the prediction matches a labeled
segment and a false positive (FP) otherwise. A false nega-
tive (FN) is a labeled segment that none of the predictions
matches. Precision and recall are computed using #TP

#TP+#FP

and #TP
#TP+#FN , respectively, and F1 is the harmonic mean

of the two. The same metrics apply to column-wise accuracy
evaluation except that we only deem a column correct when
all the segments (across rows from different individual tables)
from a column are correct.

6Examples: www.century21.com, www.britishcycling.org.uk.

Experimental Results
Cell-wise: The cell-wise performance is reported in Table 1.
As expected, alignment with candidate segments generated
by a single heuristic (SEP or LCS) works moderately on
identifying hidden attributes correctly, however, the coverage
leaves much to be desired. The best strategy involves all three
segmentation heuristics, SEP+LCS+WK, which achieves an
F1 relatively 15% higher than the second best, LCS+WK. This
large gain of F1 measure is obtained by significantly improv-
ing the recall: SEP+LCS+WK has a relative 35%+ higher re-
call than other strategies. This is consistent with our expecta-
tion because leverage all available heuristics brings in a large
and diverse set of segmentation candidates.

Segments Precision Recall F1
SEP 0.458 0.260 0.332
LCS 0.630 0.478 0.543

SEP+LCS 0.551 0.484 0.516
LCS+WK 0.650 0.516 0.575

SEP+LCS+WK 0.627 0.703 0.663

Table 1: Performance on hidden attribute extraction with different
combinations of segmentation heuristics: SEP is the separator-based
heuristics in Section 3.3, LCS is the Longest Common Subsequences
heuristics, and WK refers to the wikification-based heuristics.

More importantly, we note that the candidate segments
from syntactic (SEP and LCS) and semantic (WK) heuris-
tics are complementary. Comparing SEP+LCS against
SEP+LCS+WK or LCS against LCS+WK, both precision and
recall are improved thanks to the addition of the Wikification-
based segments. The syntactic heuristics work well in many
cases. For instance, assume two sequences “Location: Seat-
tle, WA” and “Location: Portland, OR”. The segment “Lo-
cation:” is identified as the common segment and therefore
the segments “Seattle, WA” and “Portland, OR” are correctly
identified as potential hidden attributes. However, in the ex-
ample of “Springfield High School” and “Jacksonville Ele-
mentary School”, the syntactic heuristic will naively recog-
nize the segment “School” as the common separator because
it largely ignores the semantic meaning of the whole phrase,
while Wikification-based segmentation will recognize “Jack-
sonville Elementary School” as a single entity. In particular,
the Wikification heuristic prevents over-segmenting a phrase,
as well as helps segmenting large text chunks into meaning-
ful phrases where punctuation is not available. For example,
“American Airline (AA) #1430” is a single segment by syn-
tactic heuristics while a semantic heuristics can break it up
into the airline name and the flight number.

We also observe that surrouding text are comparatively
harder for extraction than titles. It is partly because the col-
lection of surrounding text can make errors (e.g. absense of
relevant text in the closest DOM node).

Column-wise: We further examine if correct hidden at-
tributes are created column-wise. The cell-wise evalu-
ation shows the performance of sequence labeling while
the column-wise evaluation measures the quality of the
entire alignment. We evaluated only the best strategy
SEP+LCS+WR on the same set of Precision/Recall/F1 num-

2681

bers (the other strategies are significantly worse). In sum-
mary, our method generated 62 attribute columns across 20
table groups, 24 of which are column-wise correct (i.e. ev-
ery cell of the column matches the labels), and 31 labeled
columns were missed, resulting in a precision/recall/F1 at
0.387 / 0.436 / 0.410. If we relax the correctness condition by
allowing one wrong cell in a column, the F1 measure will be
improved to 0.547. Looking at the table groups individually,
7 out of 20 groups have a perfect match between the predic-
tions and the human labels. We note that the content of the
wrongly generated columns due to segmentation errors could
still be useful in the searching scenarios.

4.3 Hidden Attribute Column Label Prediction
In this section, we examine the effectiveness of automati-
cally labeling the types for automatically extracted attribute
columns, using a straight-forward column labeler based on
the cell values. Given a provided isA database as described
in Section 2, each cell value is matched to a list of zero or
more types. A type is assigned to a column if and only if at
least t% of its cell values have that type. Each predicted label
is then manually marked as vital, ok, or incorrect de-
pending on how accurate and appropriate the label is for the
column, as done in [Venetis et al., 2011]. To compute preci-
sion, a predicted label is scored 1 if it is marked as vital,
0.5 if marked as ok, or 0 otherwise. On average, there are
five relevant labels for a given column. Thus, for fairness, if
there is no relevant label marked for a given column, we as-
sume that there are five missed relevant labels for computing
the recall.

We vary the threshold t from 0.05 to 1 in an increment of
0.05 to draw a precision-recall curve (shown in Figure 3). We
observe a performance comparable to [Venetis et al., 2011].
The precision ranges from 0.4 to 1.0 and the maximum re-
call is 0.89. We are thus confident that this provides a good
overview of the hidden attribute columns.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

Recall

varying t

Figure 3: Precision/Recall diagram of the label predictions for the
hidden attribute columns.

5 Related Work
There have been several studies on extracting tables from the
Web. [Gatterbauer and Bohunsky, 2006] extract tables from
Web pages based on their DOM nodes’ visual positions. [Ca-
farella et al., 2008b] proposed the initial WebTables vision
for web-scale table extraction, implementing a mix of hand-
written detectors and statistical classifiers that identified 154

million high-quality relational style tables from a raw col-
lection of 14.1 billion tables on the Web. [Elmeleegy et al.,
2009] split lists on Web pages into multi-column tables in a
domain-independent and unsupervised manner.

Some previous works tried to discover and leverage the
relationship between individual tables. [Pimplikar and
Sarawagi, 2012] answers a query from millions of tables
by identifying a table’s relevance to the query and map-
ping the columns of relevant tables to the query’s key
words. Table synthesis is also connected to finding related
tables [Das Sarma et al., 2012] and yet very different. The
latter is only concerned with finding tables that are relevant
in some way, such as being about the same topic, even when
those tables are entirely not stitchable.

The Octopus System [Cafarella et al., 2009] includes a
context operator that tries to identify additional information
about the table on a Web page. The operator was imple-
mented by ranking a keyword list according to the Tf/Idf
scores. Our work differs in that our extracted attribute val-
ues are represented as meaningful phrases instead of isolated
keywords. Moreover, we align them in columns, providing a
structured view across the tables instead of orderless lists of
keywords.

Lastly, the hidden value extraction algorithm is based on
Multiple Sequence Alignment (MSA), originally designed to
compare DNA sequences [Gusfield, 1997]. Also, [Barzilay
and Lee, 2002; 2003] applied MSA to lexicon acquisition for
a text generation system and to find paraphrasing patterns re-
spectively. In contrast, instead of being given two sequences
of fixed symbols for alignment, we need to determine the
segments of tokens on the fly and simultaneously align those
segments. For that, the classic sequence alignment algorithm
is extended for our scenario by incorporating candidate seg-
ments from various heuristics. The hidden value extraction
is also related to wrapper induction [Crescenzi and Mecca,
2004]. The main differences lie in that our approach does not
heavily rely on HTML tags and that our work can be applied
to extractions on different websites.

6 Conclusion
We proposed an effective solution for stitching tables on the
same site into a meaningful union table, as the first step to-
wards addressing the challenge of synthesizing tables on the
Web. Specifically, our solution identifies tables that are stitch-
able, infers necessary yet minimal set of hidden attributes
from the context, unions the tables into a single table with
proper attribute values for disambiguation, and finally pro-
vides the context with reasonable labels. Our experiments
over a corpus of real world tables demonstrate the effective-
ness of our proposed solution over various aspects of the
stitching process. We believe table synthesis will enable users
to explore the harvested structured data with more powerful
capabilities.

In future work, we plan to design algorithms to improve
the stitchable table identifier, extract hidden attributes from
other sources (e.g. URLs of the Web pages) and investigate
the relationship between the table content and induced hidden
attributes.

2682

Acknowledgments
We would like to thank Shirley Zhe Chen and Spiros Pa-
padimitriou for early exploration and helpful discussion on
this project.

References
[Barzilay and Lee, 2002] R. Barzilay and L. Lee. Boot-

strapping lexical choice via multiple-sequence alignment.
In Proceedings of the ACL-02 conference on Empiri-
cal methods in natural language processing-Volume 10,
pages 164–171. Association for Computational Linguis-
tics, 2002.

[Barzilay and Lee, 2003] R. Barzilay and L. Lee. Learning
to paraphrase: An unsupervised approach using multiple-
sequence alignment. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language
Technology-Volume 1, pages 16–23. Association for Com-
putational Linguistics, 2003.

[Bergroth et al., 2000] L. Bergroth, H. Hakonen, and
T. Raita. A survey of longest common subsequence algo-
rithms. In String Processing and Information Retrieval,
2000. SPIRE 2000. Proceedings. Seventh International
Symposium on, pages 39–48. IEEE, 2000.

[Cafarella et al., 2008a] M.J. Cafarella, A. Halevy, D.Z.
Wang, E. Wu, and Y. Zhang. Webtables: exploring the
power of tables on the web. Proceedings of the VLDB En-
dowment, 1(1):538–549, 2008.

[Cafarella et al., 2008b] M.J. Cafarella, A.Y. Halevy,
Y. Zhang, D.Z. Wang, and E. Wu. Uncovering the
relational web. WebDB, 2008.

[Cafarella et al., 2009] M.J. Cafarella, A. Halevy, and
N. Khoussainova. Data integration for the relational web.
Proceedings of the VLDB Endowment, 2(1):1090–1101,
2009.

[Crescenzi and Mecca, 2004] Valter Crescenzi and Giansal-
vatore Mecca. Automatic information extraction from
large websites. Journal of the ACM (JACM), 51(5):731–
779, 2004.

[Das Sarma et al., 2012] A. Das Sarma, L. Fang, N. Gupta,
A. Halevy, H. Lee, F. Wu, R. Xin, and C. Yu. Finding re-
lated tables. In Proceedings of the 2012 international con-
ference on Management of Data, pages 817–828. ACM,
2012.

[Elmeleegy et al., 2009] H. Elmeleegy, J. Madhavan, and
A. Halevy. Harvesting relational tables from lists on the
web. Proceedings of the VLDB Endowment, 2(1):1078–
1089, 2009.

[Gatterbauer and Bohunsky, 2006] W. Gatterbauer and
P. Bohunsky. Table extraction using spatial reasoning
on the css2 visual box model. In PROCEEDINGS
OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, volume 21, page 1313. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

[Gupta and Sarawagi, 2011] Rahul Gupta and Sunita
Sarawagi. Joint training for open-domain extraction on
the web: Exploiting overlap when supervision is limited.
In WSDM, 2011.

[Gusfield, 1997] D. Gusfield. Algorithms on strings, trees
and sequences: computer science and computational biol-
ogy. Cambridge University Press, 1997.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F.C.N.
Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. 2001.

[Limaye et al., 2010] G. Limaye, S. Sarawagi, and
S. Chakrabarti. Annotating and searching web ta-
bles using entities, types and relationships. Proceedings
of the VLDB Endowment, 3(1-2):1338–1347, 2010.

[Milne and Witten, 2008] D. Milne and I.H. Witten. Learn-
ing to link with wikipedia. In Proceedings of the 17th ACM
conference on Information and knowledge management,
pages 509–518. ACM, 2008.

[Pasca and Van Durme, 2008] M. Pasca and B. Van Durme.
Weakly-supervised acquisition of open-domain classes
and class attributes from web documents and query logs.
In Proceedings of the 46th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-08), pages 19–
27, 2008.

[Pimplikar and Sarawagi, 2012] Rakesh Pimplikar and
Sunita Sarawagi. Answering table queries on the web
using column keywords. In Proc. of the 38th Int’l
Conference on Very Large Databases (VLDB), 2012.

[Ratinov et al., 2011] L. Ratinov, D. Roth, D. Downey, and
M. Anderson. Local and global algorithms for disam-
biguation to wikipedia. In Proceedings of the Annual
Meeting of the Association of Computational Linguistics
(ACL), 2011.

[Venetis et al., 2011] P. Venetis, A. Halevy, J. Madhavan,
M. Paşca, W. Shen, F. Wu, G. Miao, and C. Wu. Recov-
ering semantics of tables on the web. Proceedings of the
VLDB Endowment, 4(9):528–538, 2011.

[Wang and Jiang, 1994] L. Wang and T. Jiang. On the com-
plexity of multiple sequence alignment. Journal of com-
putational biology, 1(4):337–348, 1994.

[Wang et al., 2012] Jingjing Wang, Haixun Wang,
Zhongyuan Wang, and Kenny Qili Zhu. Understanding
tables on the web. In ER, pages 141–155, 2012.

2683

