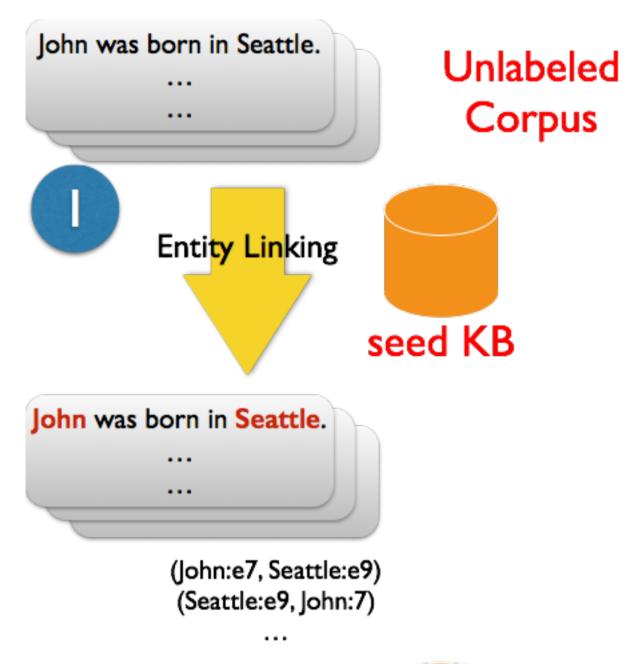
Extracting Meronyms for a Biology Knowledge Base Using Distant Supervision

Xiao Ling[†]

Peter Clark*

Daniel S. Weld[†]


[†]University of Washington

*Allen Institute for Artificial Intelligence

Overview

- ► Goal: Build a **KB** of *meronym* relations for the domain of *biology*
- ► Methodology: use **distant supervision** to learn a meronym relation extractor.
- ▶ Data: 1) a seed KB of meronym facts; 2) a unlabeled text corpus (i.e. a textbook "Campbell Biology".)
- ► Evaluation: a held-out set (172 has-part, 206 NA)

Distant Supervision

(John, Seattle): birthplace

ohn was born in Seattle. John died in Seattle. ohn visited Seattle last week. Mary gave birth to John in Seattle.

Expanding mentions with co-reference

- ► Standard: NER + string match
- ► Named Entity Linking
- ► This work: dictionary max-span matching

	Recall	Precision	F1
CV	0.664	0.820	0.733
CV+COREF	0.674	0.821	0.740
TEST	0.663	0.857	0.748
TEST+COREF	0.744	0.795	0.769

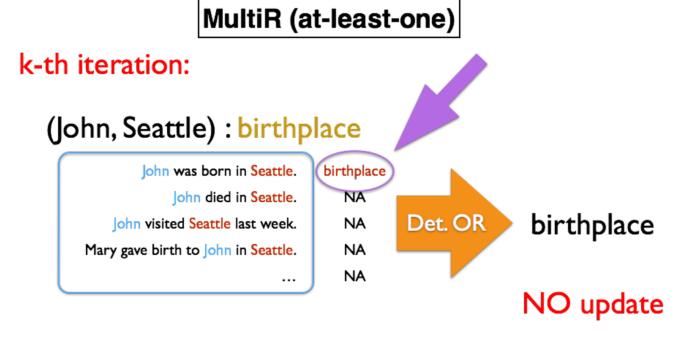
; and it has around 1,100 genes.

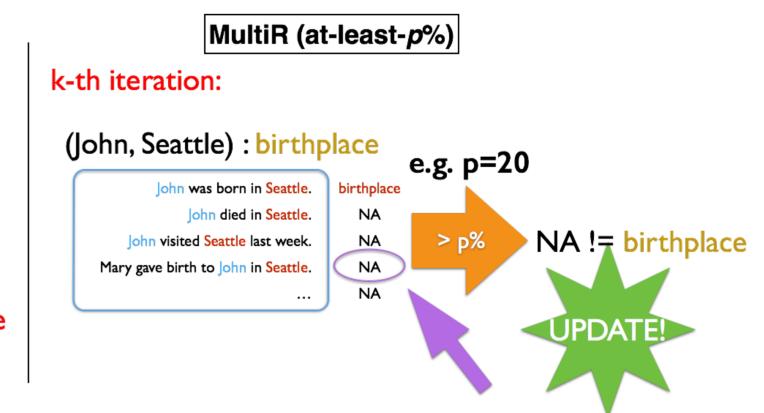
Example:

One of the sex-determining chromosomes is X chromosome

Gene

Generating negative data

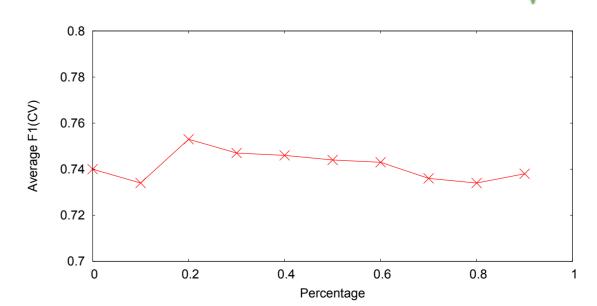

- ► The seed KB provides mostly valid facts while invalid facts can be useful as negative data.
- ► To generate negative examples: > random sample (closed world) ▶ functional relations


	#+	#-	Recall	Precision	F1
CV(BASE)	887	77	0.856	0.389	0.533
CV(REV)	887	963	0.706	0.748	0.725
CV(TRANS)	887	2566	0.674	0.821	0.740
TEST(BASE)	887	77	0.884	0.596	0.712
TEST(REV)	887	963	0.709	0.718	0.713
TEST(TRANS)	887	2566	0.744	0.795	0.769

This work:

- **reverse**: if $(e_1, has-part, e_2)$ then (e_2, NA, e_1)
- **▶** transitive closure

at-least-p% assumption



Leveraging supervision from out-of-domain

- ► additional training facts: meronyms from WordNet
- ► We match the WordNet meronyms to Wikipedia articles.

	p	#+	#-	Recall	Prec	⊦ 1
					0.892	
TEST + WN	0.0	1578	2566	0.401	0.841	0.543
TEST	0.2	887	2566	0.523	0.811	0.636
TEST+WN	0.2	1578	2566	0.558	0.793	0.655

	Recall	Precision	F1
CV(p=0)	0.674	0.821	0.740
CV(p=0.2)	0.730	0.776	0.753
$\overline{TEST(p=0)}$	0.744	0.795	0.769
TEST(p=0.2)	0.791	0.786	0.788