
Knowledge Transferring Via Implicit Link Analysis

Xiao Ling, Wenyuan Dai, Gui-Rong Xue, and Yong Yu

Department of Computer Science and Engineering
Shanghai Jiao Tong University

No. 800 Dongchuan Road, Shanghai 200240, China
{shawnling,dwyak,grxue,yyu}@apex.sjtu.edu.cn

Abstract. In this paper, we design a local classification algorithm using implicit
link analysis, considering the situation that the labeled and unlabeled data are
drawn from two different albeit related domains. In contrast to many global clas-
sifiers, e.g. Support Vector Machines, our local classifier only takes into account
the neighborhood information around unlabeled data points, and is hardly based
on the global distribution in the data set. Thus, the local classifier has good abil-
ities to tackle the non-i.i.d. classification problem since its generalization will
not degrade by the bias w.r.t. each unlabeled data point. We build a local neigh-
borhood by connecting the similar data points. Based on these implicit links, the
Relaxation Labeling technique is employed. In this work, we theoretically and
empirically analyze our algorithm, and show how our algorithm improves the
traditional classifiers. It turned out that our algorithm greatly outperforms the
state-of-the-art supervised and semi-supervised algorithms when classifying doc-
uments across different domains.

1 Introduction

Supervised classification [1,2] requires a large number of labeled data. However, man-
ual labeling is very expensive and time-consuming. Many investigations focus on the
situations that the labeled data are scarce, and the unlabeled data are used to enhance the
classification performance [3,4]. Actually, most of these researches ignore the fact that
there might be quite a lot of existing labels from the similar domains. For example, the
Blog documents and Web pages come from different albeit related domains; there are
hardly any labeled Blog documents, while there are plenty of labeled Web pages, e.g.
the pages in Open Directory Project (ODP). It is quite wasteful not to use these label
information. However as a result of the domain difference, their distributions differ due
to the different word usage for the documents in the two domains. The non-i.i.d. data
violate the basic assumption of the traditional classification techniques, and thus the
traditional classifiers cannot cope well with the cross-domain classification problem.
Note that the cross-domain learning, which is one simplified case of transfer learning
[5,6,7,8], transferring knowledge across tasks and domains.

In this paper, we focus on the problem of classifying documents across domains. Re-
call the Web page and Blog entry example. The training data (the Web pages) are under
domain Din and the test data (the Blog entries) under domain Dout are available. We
call Din in-domain, and Dout out-of-domain. In addition, it is assumed that Dout and
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Din are related and share some common knowledge, which makes knowledge trans-
ferring feasible. Our general goal is to classify the test data from Dout accurately by
transferring knowledge from the labeled data from Din.

We regard this classification problem as a labeling problem in a graph where both
labeled and unlabeled documents are represented as nodes. The edges are built based on
the similarity between two nodes. Such connections are so-called Implicit Links. Based
on the assumption of Markov Random Fields (MRF) that the label of each node is only
dependent on its immediate neighbors, we adopt the Relaxation Labeling [9] technique
to address the labeling problem. Initially, the labels for those unlabeled data are assigned
using a global classifier and then these labels are iteratively updated according to the
local neighborhood information. Since both labeled and unlabeled documents may exist
among the neighbors due to the similarity of domains, the iterative adjustments are
in fact implicitly transferring knowledge to the target domain. This is why our local
classifier is capable of handling the cross-domain problems.

Some prior works use labeled data from in-domain to solve problems under the tar-
get domain. Wu & Dietterich [10] investigated how to exploiting in-domain data in k-
Nearest-Neighbors and SVM algorithm. Daumé III and Marcu [11] utilized additional
in-domain labeled data to train a statistical classifier under the Conditional Expectation
Maximum framework. Those in-domain data play a role as auxiliary data in tackling
the scarcity of out-of-domain training data. In these work, the auxiliary data serve as a
supplement to the ordinary training data. In contrast, our work do not need any train-
ing examples in the target domain. Note that, it is possible, because the in-domain and
out-of-domain data share come common knowledge as we assumed, for the in-domain
model to learn from the out-of-domain data.

2 Transferring Knowledge through Relaxation Labeling

2.1 Problem Definition

For conciseness and clarity, we mainly focus on binary classification on the textual data
from different domains. Given two document sets Sin and Sout from in-domain Din and
out-of-domain Dout respectively, each element di in two sets is represented by a feature
vector. In the binary classification setting, the label set is {+1, −1}, that is c(di) equals
+1 (positive) or −1 (negative) where c(di) is di’s true label. As assumed in Section
1, Din and Dout are different albeit related. The objective is to find the hypothesis h
which satisfies h(di) = c(di) for as many di ∈ Sout as possible.

2.2 Local Classifier Using Labeled Neighbors

When only the content information is considered, the most probable class label ci for
each document di maximizes Pr(ci|τ(di)) where τ(di) is the textual information of
di. However, the fact that the labeled and unlabeled data come from different domains
curbs the generalization ability since the model will fit the training data, but will not
cope well with the test data.

In order to circumvent this obstacle, the class labels of similar documents are also
worthy considering. We build a graph with nodes representing documents and edges by
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implicit links. Hereinafter, the terms “document” and “node” are used interchangeably.
Each document is connected to its most similar documents. With these links, we prefer
the class label which maximizes Pr(ci|τ(di), Ni) where Ni is the immediate neigh-
borhood of di. This immediate neighborhood assumption characterizes the first-order
Markov Random Field. In this subsection, it is assumed that the labels of neighbors are
all known, although this assumption does not hold in our problem setting. In the next
subsection, the model will be extended to cope with neighbors without labels. Applying
the Bayes Rule to Pr(ci|τ(di), Ni), it is obtained that

Pr(ci|τ(di), Ni) =
Pr(τ(di), Ni|ci) · Pr(ci)

Pr(Ni, τ(di))
. (1)

Assume the content of the document τ(di) has no direct coupling with its neighbors’
labels. And Pr(Ni, τ(di)) is regarded as a constant since the task is to classify di. Then
(1) is spanned into

Pr(ci|τ(di), Ni) ∝ Pr(τ(di)|ci) · Pr(Ni|ci) · Pr(ci) . (2)

Assuming that given the class label of a node di, all its neighbors are independent with
each other,

Pr(Ni|ci) =
∏

dj∈Ni

Pr(dj |ci) . (3)

Combining (2) and (3), we obtain that

ci = arg max
ci

Pr(ci|τ(di), Ni)

= arg max
ci

Pr(τ(di)|ci) · Pr(ci)
∏

dj∈Ni

Pr(dj |ci) .
(4)

2.3 Classification with Out-of-Domain Unlabeled Data

As mentioned in the last subsection, the assumption that the labels of all neighbors
are known is hardly satisfied. It is to say that all the similar documents of an unlabeled
document are labeled, which is rarely possible in the cross-domain setting. To utilize the
neighbors without labels, the Relaxation Labeling (abbreviated as RL) [12] technique
is adopted here. In the RL process, with the initial labels, updates for unlabeled data are
carried out iteratively.

Intuitively, the neighborhood of a certain node d is more likely to be given the same
label of d. Both the test instances and the training ones are allowed to be the neighbors
of the test nodes. The neighbors from the training data partially supervise the labeling
while at the same time the test neighbors help not only correctly update labels but
also avoid the bias by the constraints of local consistency. The Relaxation Labeling
technique here reduces the cross-domain bias because in the iteration it enables the
unlabeled data to be classified by themselves. In this view, the Relaxation Labeling
updates the labels iteratively and thus gradually transfers knowledge across domains.
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With the implicit links in previous subsection, we denote GK to be all the informa-
tion known in the graph. In this notation, the most probable label ci is the one that can
maximizes

Pr(ci|GK) =
∑

NU
i

Pr(ci|GK , NU
i ) · Pr(NU

i |GK) (5)

where ci is the class label corresponding to di and NU
i represents the set of di’s neigh-

bors still with “unknown” label. The summation is over all possible assignments of
NU

i .
Using the independence assumption of the class label for each dj among NU

i ,

Pr(NU
i |GK) =

∏

dj∈NU
i

Pr(cj |GK) . (6)

Similarly with previous subsection, the class label of one document is dependent on its
local content as well as its similar documents (i.e. its immediate neighbors).

Pr(ci|GK , NU
i ) = Pr(ci|NK

i , NU
i ) (7)

where NK
i is the neighborhood with “known” labels. Combining (6) and (7) and ma-

nipulating it into an iterative solution, we obtains

Pr(ci|GK)(r+1) =
∑

NU
i

⎡

⎣
∏

dj∈NU
i

Pr(cj |GK)(r)Pr(ci|NK
i , NU

i )(r)

⎤

⎦ (8)

where Pr(ci|NK
i , NU

i ) can be treated as Pr(ci|Ni) in the previous subsection where the
labels of Ni are all known. The superscript (r) denotes the iteration number.

Since the number of the terms in the summation (8) is exponential to the size of un-
labeled documents, the computation is intractable. To reduce the computation expense,
we adopted the hard labeling method in [13], whose main idea is to use the most prob-
able initial labels of those unknown neighbors to alleviate the consuming computation
of summation.

Pr(ci|GK) ≈ Pr(ci, N
U ′

i |NK
i ) (9)

where NU ′

i is the neighborhood with the most probable assignment for class labels.
This hard labeling is seen as a rough approximation of (8). However, the magnitude of
other terms is often small compared to the selected assignment, and therefore the hard
labeling method may work well. We also consider the soft version of labeling strategy
[13], which selectively takes more terms of the summation (8) into computation. Em-
pirically, it is comparable to the “hard labeling” strategy. The details are omitted due to
the space limit. Algorithm 1 gives the outline of our method. After the initializations,
the algorithm iterates until the convergence and then it outputs the predicted labels of
unlabeled data.
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Algorithm 1. Transfer Knowledge by Relaxation Labeling (TKRL)
Input :
labeled and unlabeled data from in-domain and out-of-domain respectively,
the initial labels for unlabeled data via a basic classifier,
parameter k for building the graph.
Output : the final labels for unlabeled data
Initialization:
oldlabel = null, newlabel = initial labels,
build the graph with all information including the content of each di and each immediate
neighborhood Ni, s.t. |Ni| = k for each i.
Iteration:
while oldlabel �= newlabel do

oldlabel = newlabel.
estimate the prior probability Pr(c = +1) and Pr(c = −1).
for each di do

estimate the conditional probabilities Pr(ci = +1|di), Pr(ci = −1|di)
end for
for di in unlabeled data do

update its label in newlabel according to (9)
end for

end while
return newlabel

3 Experimentation

3.1 Data Sets

To validate our algorithm, we developed a series of cross-domain data sets based on
20 Newsgroups1, Reuters-215782 and SRAA3. The basic idea is to utilize the hierarchy
of the data sets. The task is defined as classifying top categories. Each top category
is split into two disjoint parts with different sub-categories, one for training and the
other for test. Therefore the training and test data come from different domains. Take
SRAA as an example, which is a Simulated/Real/Aviation/Auto UseNet data set for
document classification. For the data set real vs simulated, we use the docu-
ments in real-auto and sim-auto as in-domain data, while real-aviation
and sim-aviation as out-of-domain data. Other tasks were generated in a similar
way. On these textual data, regular preprocessing was done including tokenization into
bag-of-words, converting into low-case words, stop-word removing and stemming. We
also carried out feature selection by thresholding Document Frequency [14]. In our
experiments, Document Frequency threshold is set to 3.

The data from different domains are certainly under different distributions. To ver-
ify our data design, we calculated Kullback-Leibler Divergence (K-L Divergence) [15]
based on Term Frequency for each data set, which measures distance between

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/
3 http://www.cs.umass.edu/ mccallum/data/sraa.tar.gz
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Table 1. Description of the data sets for cross-domain text classification, and the error rates of
each classifier. “Din–Dout” means training on Din and testing on Dout; “Dout–CV” means 10-
fold cross-validation on Dout.

Data Set
Documents

K-L
SVM

TSVM NBC TKRL|Din| |Dout| |W| Dout–CV Din–Dout

real vs simulated 8,000 8,000 14,433 1.161 0.032 0.266 0.130 0.245 0.126
auto vs aviation 8,000 8,000 14,433 1.126 0.033 0.228 0.102 0.136 0.099

rec vs talk 3,669 3,561 19,412 1.102 0.003 0.233 0.040 0.269 0.032
rec vs sci 3,961 3,965 18,152 1.021 0.007 0.212 0.060 0.153 0.058

comp vs talk 4,482 3,652 17,918 0.967 0.005 0.103 0.097 0.025 0.022
comp vs sci 3,930 4,900 18,379 0.874 0.012 0.317 0.183 0.206 0.100
comp vs rec 4,904 3,949 18,903 0.866 0.008 0.165 0.098 0.216 0.046
sci vs talk 3,374 3,828 20,057 0.854 0.009 0.226 0.108 0.258 0.056

orgs vs places 1,079 1,080 4,415 0.329 0.085 0.454 0.436 0.375 0.339
people vs places 1,239 1,210 4,562 0.307 0.113 0.266 0.231 0.217 0.188
orgs vs people 1,016 1,046 4,771 0.303 0.106 0.297 0.297 0.282 0.272

distributions. More formally, KL(D1||D2) =
∑

i D1(i) log2
D1(i)
D2(i)

where D1 and D2

are two distributions. As listed in the fifth column of Table 3.1, the K-L Divergence
values of all the data sets are all far larger than zero which means that they come from
different distributions. This observation justifies that our design is reasonable. Also, we
calculated the error rates using the SVM classifier across the domains (Din–Dout) and
only within the test set (Dout–CV). The relative low error rates in Dout–CV prove that
the test data are out-of-domain.

3.2 Experimental Results

To evaluate the effectiveness of our method, we compare it to two supervised methods:
the SVM and the Naive Bayes classifier (NBC) as well as a semi-supervised method:
the TSVM (Transductive SVM) classifier [4] by their error rates. The SVM and TSVM
classifiers are implemented by SVMlight 4. The Naive Bayes Classifier is implemented
using Laplace Smoothing. Each document is then represented by a feature vector with
Term Frequency in our algorithm. When applying SVM or TSVM to these data (men-
tioned in the next subsection), the tf-idf values are used. Through comparing with tradi-
tional supervised classifier, it is seen that the different domains the training and test data
come from bring classification much difficulty and hence poor performance. Although
the semi-supervised classifier fully utilizes the unlabeled data in the classification pro-
cess, it still works under the identical-domain assumption.

Our method (named TKRL) aims at handling the cross-domain problem, which
achieves high performance in this cross-domain data setting. In the implementation,
we use the Naive Bayes classifier to give the initial labels and adopt cosine measure for
building the graph. In Table 3.1, we see that semi-supervised algorithm TSVM (8th col-
umn) always outperforms the supervised algorithm SVM (7th column) and NBC (9th
column) almost all the time. It is because taking unlabeled data into account is in some

4 http://svmlight.joachims.org
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Fig. 2. The convergence curve of five tasks

sense partially transferring supervisory knowledge into the target domain. However the
transferring is not complete. On the other hand, it is noticed that NBC performs bet-
ter than SVM. We believe that NBC is less influenced by the domain difference than
SVM due to its simple independence assumption. Employing implicit link analysis, our
method aims at handling data under different domains and in fact TKRL achieves the
lowest error rates through all eleven tasks. However, the performance of certain data
sets are still unsatisfactory. It is mainly attributed to the noise in the data. In the three
Reuters-21758 tasks, the test error by SVM is not satisfactory yet. It is mainly because
of the data noise and thus less common knowledge between domains. Note that our
algorithm achieves improvements on the classical classifiers.

Parameter Sensitivity. Only one parameter k exists in our algorithm, which limits the
size of immediate neighborhood. We enumerate the value of k ranging from 5 to 60 to
evaluate its influence on performance. Figure 1 displays the error rate curve on the five
representative tasks. It is observed that our algorithm is not very sensitive to k when k is
greater than 30 since the rest of the curves are quite stable. Empirically, we set k = 30
to get better performance.

Convergence. In Fig. 2, we plot the error rate along with each iteration step on five
tasks. Experimentally, our algorithm converges after several iterations. Generally, the
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iteration process needs around 9 steps on average. From Fig. 2, we observe that the
error rate decreased by a large amount in the first several iterations.

Size of Training Examples. We also investigate the influence by the size of training
examples. A portion of examples in comp vs sci are randomly chosen for training,
from 100 examples to all. From Fig. 3, we observed that TKRL reaches the lowest error
rate at the size of 200 training examples. It is because if the training data are fewer,
the information from labeled data will be too scarce; on the contrary, if the data from
in-domain are more than enough, the in-domain knowledge will impact and deteriorate
the out-of-domain classification performance.

4 Conclusion and Future Work

In this paper, we design a method for the cross-domain classification problem where
only labeled data from in-domain are available for predicting the class labels of
unlabeled data from out-of-domain. Our local classifier labeled the test data only con-
sidering the neighborhood information. We leverage implicit link analysis for this cross-
domain classification. Experimental evaluations reveal that our method is very effective
on handling the cross-domain problems. There are several directions for future exten-
sions. We wish to test on another kind of data, such as images. It is also interesting to
find an online way of classification, that is the test data are incrementing.
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