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Motivation

• Traditional Relation Extraction

12/23/2010 2

True?

1916 2001

Headquartered_in(Boeing, Seattle)



This talk: Temporal Information Extraction

• Input: raw text, e.g. 

• Output: 
events annotated with bounds on endpoints
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* This work focuses on one sentence at a time 

Steve Jobs revealed the iPhone in 2007.



Outline

• Motivation

• Previous Work

• TIE

• Experiments

• Conclusion
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TempEval [Verhagen et al, 2007] 
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In most countries of the world recovery from the 
Great Depression  began between late 1931 …
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Transitivity (Yoshikawa et al., 2009) 

• Restricted to the elements in test data

• Intra-sentence transitivity not fully exploited

In most countries of the world, recovery from the Great 
Depression began between late 1931 and early 1933 .

In the United States recovery began in the spring of 1933.

?
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Transitivity cont.

• Restrict the relation set to 

{BEFORE, AFTER, OVERLAP}

• Point-based relations: 
p1 < p2, p2 < p3 => p1 < p3

X OVERLAP Y

OVERLAP is ambiguous!

X BEFORE Y X AFTER Y
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(Verhagen et al, 2007), (Yoshikawa et al., 2009)

A OVERLAP B, B OVERLAP C => A ? C

X Y XY

X

Y

X

Y

X

Y



Contributions
• System TIE (Temporal Information Extractor)

– Intra-sentence transitivity 

– high level features

• Temporal Entropy 

a new metric for measuring tightness of the bounds
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Outline

• Motivation

• Previous Work

• TIE

– Architecture

– Learning

– Inference

• Experiments

• Conclusion
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TIE: System Overview

Text Events & TimesAnnotator

Parser
& SRL

Inference

Features

Markov Logic Network

Point-wise relations
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Markov Logic Networks

• A Markov Logic Network (MLN) is a set of 
pairs (Fi, wi) where

– Fi is a formula in first-order logic

– wi is a real number as the weight of Fi

*Borrowed from Hoifung’s slides
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TIE: System Overview
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First-order Rules

Training Data

Weight 
Learning



TIE: System Overview
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Text Events & TimesAnnotator



Annotating Event and Time

In most countries of the world, recoverye1 from the Great 
Depressione2 begane3 between late 1931t1 and early 1933t2.

In most countries of the world, recovery from the Great 
Depression began between late 1931 and early 1933 .

[Verhagen et al,2005] 
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TIE: System Overview
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Text Events & TimesAnnotator
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& SRL
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Dependency Parsing

Syntactic

Dependency: prep_between(began, 1931)

Feature: prep_between(e3, t1)

In most countries of the world, recoverye1 from the Great 
Depressione2 begane3 between late 1931t1 and early 1933t2.

[De Marneffe et al,2006] 
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Semantic Role Labeling

Feature:    srl_after(  e3,   t1), srl_after(t2  ,  e3)

In most countries of the world, recoverye1 from the Great 
Depressione2 begane3 between late 1931t1 and early 1933t2.

In most countries of the world, recoverye1 from the Great 
Depressione2 begane3 between late 1931t1 and early 1933t2.

Temporal
Argument

[Koomen et al,2005] 
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Summary of Features

• Event and Time attributes

– value(t1, “1933”), tense(e1, “PAST”)

• Syntactic Dependency

– prep_between(e3, t1)

• SRL Features

– srl_after(  e3,   t1)
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TIE: System Overview

Features

Markov Logic Networks
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4 MLN formula templates
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point(x)     {   x, x   }

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1,p2)

after(p1 ,p2) ^ after(p2, p3) => after(p1, p3)
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4 MLN formula templates
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point(x)     {   x, x   }

prep_before(e1, t1) => after(   t1, e1    ) 

John lefte1 before 6 pmt1.



4 MLN formula templates
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point(x)     {   x, x   }

prep_before(e1, t1) => after(   t1, e1    ) 

prep_before(e1, t1) => after(   t1, e1 ) 

prep_before(e1, t1) => after( t1    , e1  ) 

……

John lefte1 before 6 pmt1.



4 MLN formula templates

12/23/2010 28
point(x)     {   x, x   }

dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

value(t1, “future”) ^ tense(e1, “past”) => after(   t1, e1    ) 

srl_after(p1, p2) => after(p1,p2)

after(p1 ,p2) ^ after(p2, p3) => after(p1, p3)
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MLN: Learning

• Training set: TimeBank

– manually labeled news articles

– 1456 pairs of temporal elements
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dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1,p2)

after(p1 ,p2) ^ after(p2, p3) => after(p1, p3)

Learned weights for:



MLN: Learning

• Training set: TimeBank

– manually labeled news articles

– 1456 pairs of temporal elements
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dep(x,y) => after(point(x),point(y))

value(t,+v) ^ tense(e, +s) => after(point(e),point(t))

srl_after(p1, p2) => after(p1,p2)

after(p1 ,p2) ^ after(p2, p3) => after(p1, p3)

manually



TIE: System Overview

Inference

Features

Markov Logic Networks

Point-wise relations
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MLN: Inference

• MC-SAT (Poon et al, 2006): 

– marginal probabilities

over relations of all possible point pairs

– predictions

by thresholding the probabilities 
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Outline

• Motivation

• Previous Work

• TIE

• Experiments

• Conclusion
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Experiments

• Dataset (From Wikipedia)

– 45 sentences:

• 151 events and 56 times 

• 644 point pairs in total

• Labeling all point-wise constraints

– 2 people and a 3rd person to resolve conflicts
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Comparison Systems

• (Pasca, 2008): lexico-syntactic patterns

• TARSQI: hand-code rules + maxent classifier

• SRL: interpreting tmp args based on the preps
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Experiments – PR Curves
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Ablation test: Transitivity [TIE-trans] 
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Ablation test: SRL [TIE-srl]
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Ablation test: Both [TIE-srl-trans]
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Temporal Entropy

• PR: are they predicted?

after(p1, p2), after(p3, p2), after(p2, p4), after(p1, p3) 
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Temporal Entropy

• PR:

after(p1, p2), after(p3, p2), after(p2, p4), after(p1, p3)

v.s.

after(p1, p2), after(p3, p2), after(p2, p4), after(p1, p3) 
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Temporal Entropy

• PR:

after(p1, p2), after(p3, p2), after(p2, p4), after(p1, p3)

p4 < p2 < p1

v.s.

after(p1, p2), after(p3, p2), after(p2, p4), after(p1, p3) 

p4 < p2 < p3

Which is tighter?
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Temporal Entropy

],[ UL ppp

)log()( LU pppTE 
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1931 < recovery < 1933

TE ( recovery) = log(3 years in seconds)



Temporal Entropy
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day

year

decade



Conclusion

• TIE

– Input: raw text 

– Output: events annotated with bounds on endpoints

• Exploits transitivity & high-level features 

• Outperforms alternative state-of-the-art systems

• Temporal Entropy

a new measure for tightness of the bounds
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Thanks! Questions?

Future directions

• Improve Event-Event predictions

– hard to predict w/o knowing the semantics

e.g. The meeting has been cut off for two years.

The meeting has been running for two years.

• Inter-sentence inference

– e.g. adjacent sentence transitions, event coref, etc.
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