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Applications
• Relation Extraction  

(e.g. Koch et al. 2014) 

• Coreference Resolution  
(e.g. Hajishirzi et al. 2013, Durrett & Klein 2014) 

• Question Answering  
(e.g. Sun et al. 2015) 

• Web Search  
(e.g. Knowledge Graph) 

• many others…  
(see Shen et al. 2014; Roth et al. 2014)
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Ambiguity

• Seattle beat Portland yesterday. 

• Seattle scores high in the latest report of startup 
hubs. 

• The Emerald City Council To Make Decision on 
Antibiotic Resolution
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Popular Data Sets
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Datase
t

# of Mentions Knowledge Base

UIUC
ACE 244 Wikipedia

MSNBC 654 Wikipedia
AIDA 

(Hoffart et 
al. 2011)

AIDA-D 5917 Yago
AIDA-T 5616 Yago

TAC KBP

TAC09 3904 Wikipedia 2008
TAC10 2250 Wikipedia 2008
TAC10T 1500 Wikipedia 2008
TAC11 2250 Wikipedia 2008
TAC12 2226 Wikipedia 2008



Unfortunately…
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ACE MSNBC AIDA-D AIDA-T KBP09 KBP10 KBP10T KBP11 KBP12

Cucerzan (2007) ⎷
Milne & Witten (2008)
Kulkarni et al. (2009) ⎷
Ratinov et al. (2011) ⎷ ⎷
Hoffart et al. (2011) ⎷
Han & Sun (2012) ⎷
He et al. (2013a) ⎷ ⎷
He et al. (2013b) ⎷ ⎷

Cheng & Roth (2013) ⎷ ⎷ ⎷
Sil & Yates (2013) ⎷ ⎷ ⎷

Li et al. (2013) ⎷ ⎷
Cornolti et al. (2013) ⎷ ⎷
TAC-KBP participants ⎷ ⎷ ⎷ ⎷ ⎷
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Metonymy
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ACE MSNBC AIDA-D AIDA-T KBP09 KBP10 KBP10T KBP11 KBP12

Cucerzan (2007) ⎷
Milne & Witten (2008)
Kulkarni et al. (2009) ⎷
Ratinov et al. (2011) ⎷ ⎷
Hoffart et al. (2011) ⎷
Han & Sun (2012) ⎷
He et al. (2013a) ⎷ ⎷
He et al. (2013b) ⎷ ⎷

Cheng & Roth (2013) ⎷ ⎷ ⎷
Sil & Yates (2013) ⎷ ⎷ ⎷

Li et al. (2013) ⎷ ⎷
Cornolti et al. (2013) ⎷ ⎷
TAC-KBP participants ⎷ ⎷ ⎷ ⎷ ⎷

… Moscow ’s as 
yet undisclosed 

proposals …

Moscow (city)

Russia (country)

Government of Russia



Nested Entities
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ACE MSNBC AIDA-D AIDA-T KBP09 KBP10 KBP10T KBP11 KBP12

Cucerzan (2007) ⎷
Milne & Witten (2008)
Kulkarni et al. (2009) ⎷
Ratinov et al. (2011) ⎷ ⎷
Hoffart et al. (2011) ⎷
Han & Sun (2012) ⎷
He et al. (2013a) ⎷ ⎷
He et al. (2013b) ⎷ ⎷

Cheng & Roth (2013) ⎷ ⎷ ⎷
Sil & Yates (2013) ⎷ ⎷ ⎷

Li et al. (2013) ⎷ ⎷
Cornolti et al. (2013) ⎷ ⎷
TAC-KBP participants ⎷ ⎷ ⎷ ⎷ ⎷

… Florida Green Party …

Green Party of the US

Green Party of Florida



Contributions
• Vinculum: a simple, deterministic, modular EL sys. 

• comprehensive evaluation over nine data sets 

• candidate conditional prob. can work quite well 

• entity types are important to the final performance 

• comparable results with two state-of-the-art sys.
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Agenda

• Introduction 

• Vinculum 

• Experiments 

• Conclusion
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Vinculum Architecture
Seattle beat Portland yesterday.
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Mention Extraction
Seattle beat Portland yesterday.
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Candidate Generation
Seattle beat Portland yesterday.

25

Candidate Entities  

- Seattle (city) 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Conditional probability 
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… capital of the state of Washington .

In 1990, Washington starred as Bleek Gilliam …

Washington refused to run for a third term …

… Washington …

p(e | m) = 
# [m -> e]

# m
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… capital of the state of Washington .

In 1990, Washington starred as Bleek Gilliam …

Washington refused to run for a third term …

… Washington …

p(       | “Washington”) = 
# “W” ->   

# “W”
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Conditional probability 



Candidate Generation
Seattle beat Portland yesterday.
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Seattle beat Portland yesterday.
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Coreference
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Seattle Sounders head 
coach Sigi Schmid has 
some ideas …  
Seattle beat Portland 
yesterday.
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Coherence
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Candidate 
Entities 

- Seattle (city) 

- Seattle 
Sounders 

- Seattle-Tacoma 
(airport) 

Candidate 
Entities 

- Portland, OR 

- Univ. of 
Portland 

- Portland 
Timbers 

Seattle beat Portland yesterday.
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0.1

0.2
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Normalized Google Distance 
(NGD)
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 (Milne & Witten, 2008)

George 
Washington John Adams

President 
of the US

US 
Constitution
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Relational Score

• Relation triples from Freebase 

• A binary score =  

• 1, if two entities appear in a triple 

• 0, otherwise 

• E.g. (Barack Obama, birthplace, United States)  
     => r (Barack Obama, United States) = 1

43

 (Cheng & Roth, 2013)
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ACE MSNBC AIDA-D AIDA-T KBP09 KBP1
0

KBP10
T

KBP1
1

KBP1
2Cucerzan (2007) ⎷

Milne & Witten (2008)
Kulkarni et al. (2009) ⎷

Ratinov et al. (2011) ⎷ ⎷

Hoffart et al. (2011) ⎷

Han & Sun (2012) ⎷

He et al. (2013a) ⎷ ⎷

He et al. (2013b) ⎷ ⎷

Cheng & Roth (2013) ⎷ ⎷ ⎷

Sil & Yates (2013) ⎷ ⎷ ⎷

Li et al. (2013) ⎷ ⎷

Cornolti et al. (2013) ⎷ ⎷

TAC-KBP participants ⎷ ⎷ ⎷ ⎷ ⎷



Data Sets
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Dataset # of Mentions Knowledge Base
ACE 244 Wikipedia

MSNBC 654 Wikipedia
AIDA-D 5917 Yago
AIDA-T 5616 Yago
TAC09 3904 Wikipedia 2008
TAC10 2250 Wikipedia 2008
TAC10T 1500 Wikipedia 2008
TAC11 2250 Wikipedia 2008
TAC12 2226 Wikipedia 2008

Mention 
based F1

Official Eval.



Candidate Generation

• intra-Wikipedia 

• CrossWikis 
(Spitkovsky & Chang, 2012) 

• Freebase Search API

47
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• Coarse-grained NER 
(Stanford NER) 

• Fine-grained Entity Types  
(Ling & Weld, 2012) Entity Type

Candidate Generation

Coreference

Coherence

Mention Extraction

Effect of Entity Types

p(e | m) = ∑t p(e,t | m)  
p(e | m) = ∑t p(e,t | m) p(t | m)

Entity Type Probability



FIGER

• 112 entity types 

• multi-label multi-class

50

(Ling & Weld, 2012)
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Overall Performance
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Overall Performance
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Overall Performance

• AIDA (Hoffart et al. 2011) 

• Illinois Wikifier 2.0 (Cheng & Roth, 2013)
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F1

50
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75
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100

Average
Cand +Entity Type +Coref +Coherence AIDA Wikifier

79.6
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Error Analysis
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Misc 
10%

Specific Labels 
14%

Context 
33%

Coreference 
10%

Types 
14%

Metonymy 
19%
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• a modular deterministic system achieves good performance 
• a comprehensive evaluation over nine data sets 

• CrossWikis provides better cond. prob. 
• Fine-grained entity types are very useful 
• Coreference and Coherence also improve the performance 

• http://github.com/xiaoling/vinculum 

Conclusion

57

Thanks! 

Questions?

Vinculum

http://github.com/xiaoling/vinculum
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Oracle Entity Types
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F1

50

62.5

75

87.5

100

ACE MSNBC AIDA-D AIDA-T TAC09 TAC10 TAC10T TAC11 TAC12 Overall
+NER (Gold) +FIGER (Gold)



Implementation Details
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Component Implementation

Mention Extraction Stanford NER

Candidate Generation CrossWikis

Entity Type Prediction Fine-grained Entity Types

Coreference Stanford Coreference

Coherence NGD + relational triples



System Comparison
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VINCULUM AIDA WIKIFIER

Mention 
Extraction NER NER NER, noun 

phrases
Candidate 
Generation CrossWikis intra-Wikipedia intra-Wikipedia

Entity Types FIGER NER  NER

Coreference representative 
mention - re-rank the 

candidates

Coherence NGD, relational NGD NGD, relational

Learning deterministic trained on AIDA trained on Wiki



Error Analysis: Metonymy

• South Africa managed to avoid a fifth successive 
defeat in 1996 at the hands of the All Blacks … 

• Prediction : South Africa

• Label : South Africa national rugby union team

61



Error Analysis: Entity Types

• Instead of Los Angeles International, for example, 
consider flying into Burbank or John Wayne 
Airport ... 

• Prediction : Burbank, California

• Label : Bob Hope Airport
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Error Analysis: Coreference

• It is about his mysterious father, Barack Hussein 
Obama, an imperious if alluring voice gone distant 
and then missing. 

• Prediction : Barack Obama

• Label : Barack Obama Sr.
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Error Analysis: Context

• Scott Walker removed himself from the race, but 
Green never really stirred the passions of former 
Walker supporters, nor did he garner outsized 
support “outstate”. 

• Prediction : Scott Walker (singer)   

• Label : Scott Walker (politician)
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