Context Representation for Named Entity Linking

Xiao Ling

Sameer Singh University of Washington

Daniel S. Weld

Named Entity Linking

Seattle beat Portland yesterday.

Candidates	String	Context	Coherence	Final	
Candidates	Similarity	Similarity	Score	Score	Score
Seattle (city)	0.6	0.3	0.1	0.0	1.0
Seattle Sounders	0.3	0.7	0.2	0.1	1.3
Seattle-Tacoma (airport)	0.4	0.2	0.0	0.1	0.7

Overview

- ► We propose a novel context representation using dependency features in replace of bag-of-words.
- ► To combat sparsity, we perform matrix completion via a low-dimensional embedding of entities and features.
- ► We present preliminary results showing promises of the new representation.

Context Representation

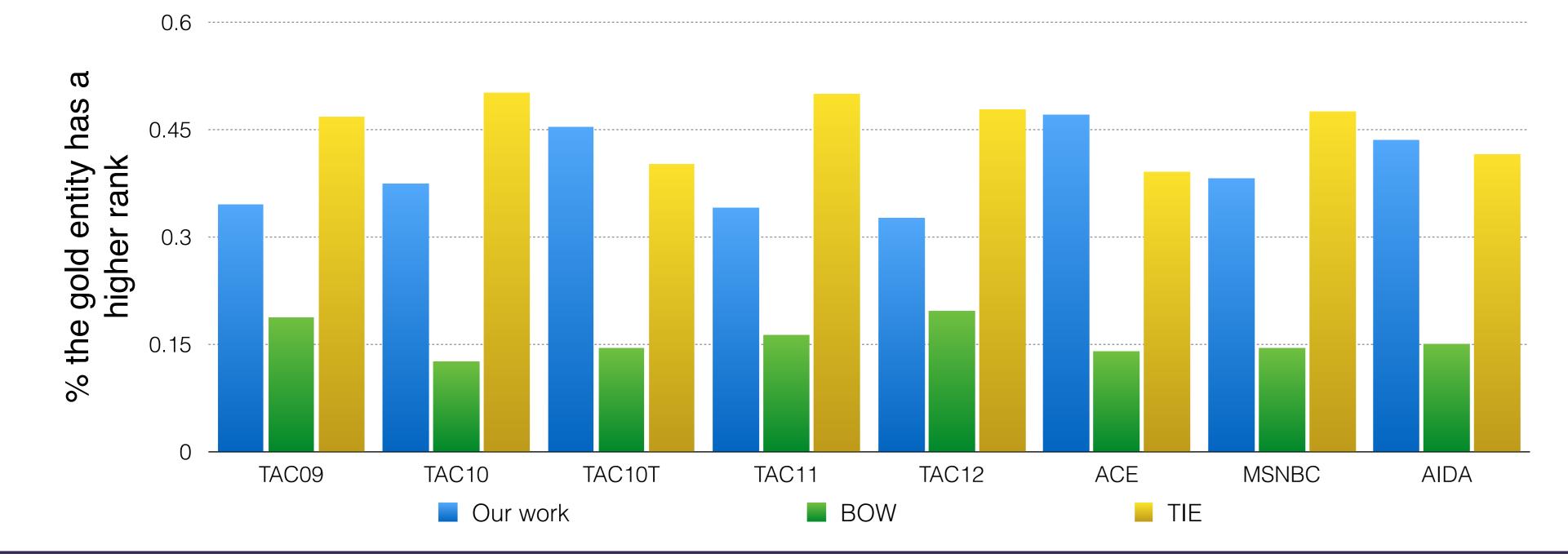
Bag-of-Words

Syntactic patterns

nsubj beat

hsubj beat dobj Portland

	Pattern Type	Example
Prer	Dependency Path	From the mention's head to a content word
	Dependency Fath	From the mention's head to a content word outside the mention. E.g. "X -[nsubj]->beat"
		E.g. the title of a person :
	Premodifier	"President Barack Obama"
	Λ	E.g. a textual description of the entity:
	Apposition	"Russell Wilson, the second-year quarterback"


Matrix Completion

Features	X serve in		X serve the	X be seat			soccer	o '		Features				
Entities	Senate	fly into X	X serve the city of LOC	of LOC	X beat	person	team	airport	$oldsymbol{v_f}$	S	ynt	actic		
Seattle (city)				1					~ J	Patt		erns	FB Types	
Seattle Sounders					?		1			S		•	e: \sim 3m x 700k fix entry $E_{e,f}$ is def	fined as
Sea-Tac (airport)		1	1					1		ntities		$E_{e,f}$ =	$=rac{1}{1+\exp(-v_e\cdot v_e)}$	$\overline{v_f}$
JFK (airport)		1	?					1		$oldsymbol{v_e}$		\checkmark We fill in missing values via learning a low-dimensional embedding of been entities (v_e) and features (v_f) fro		of both
JFK (president)	1					1						correlation	ons of a Freebase type and a feature, of two	=
New York Red Bulls					1		1						cy features and of t	WO

Nearest Neighbors in the Entity Matrix

Washington (state)		Washington, D.C.		Georgia (U.S.	Georgia (country)		
Oregon	0.2917	Philadelphia	0.2089	Tennessee	0.2834	Azerbaijan	0.2669
Washington	0.2609	San Francisco	0.2022	Florida	0.2831	Armenia	0.2637
Idaho	0.2309	Los Angeles	0.1969	Illinois	0.2779	Ukraine	0.2569
Louisiana	0.2307	Houston	0.1957	Mississippi	0.2773	Belarus	0.2395
Georgia (U.S. state)	0.2302	Boston	0.1924	Texas	0.2760	Bulgaria	0.2376
Colorado	0.2237	Tampa, Florida	0.1915	Pennsylvania	0.2677	Kyrgyzstan	0.2359
Arizona	0.2221	New York City	0.1909	Arkansas	0.2675	Serbia	0.2339
Texas	0.2214	Baltimore	0.1882	North Carolina	0.2662	Romania	0.2324

Preliminary Experimental Results

End-to-End NEL Accuracy						
Data Set	state-of-the-art	this work				
TAC09	82.2	81.8				
TAC10	86.8	87.3				
TAC10T	_	89.2				
TAC11	86.8	85.8				
TAC12	76.6	65.5				
AIDA	82.8	75.0				
ACE	85.9	87.0				
MSNBC	84.6	75.8				