Synthesizing Union Tables from the Web

Xiao Ling
Alon Halevy, Fei Wu, Cong Yu
University of Washington
Google Research
Overview

http://www.publicschoolreview.com/county_schools/stateid/AR/county/5007 Benton County Public Schools				http://www.publicschoolreview.com/county_schools/stateid/MA/county/25003 Home $>$ Massachusetts $>$ Berkshire County Public Schools Berkshire County Public Schools				http://publicschoolreview.com/state_special_education_schools/stateid/MN Home $>$ Minnesota $>$ Minnesota Special Education Schools Minnesota Special Education Schools			
There are 57 public schools in Benton County, Arkansas, serving 37,224 students. You can narrow this list by selecting school levels above the table below, or specifying additional search criteria				There are 46 public schools in Berkshire County, Massachusetts, serving 17,581 students. You can narrow this list by selecting school levels above the table below, or specifying additional search criteria.				There are 276 special education schools in Minnesota, serving 15,100 students. You can narrow this list by selecting school levels above the table below, or specifying additional search criteria.			
Benton County High Schools - Arkansas Show, All schools, High Schools, Middle Schools, Ilementary Schools 1 Private Schools				Berkshire County High Schools - Massachusetts Show. All schools, High Schools, Middle Schools, Elementary Schools I Private Schools				Minnesota Special Education High Schools: Show. All Schools, High Schools, Middle Schools, Elementary Schools			
Town	School	\#Students	Grades	Town	School	\# Students	Grades	Town	School	\# Students	Grades
Bentonville	I- Bentonville High School	3333	9-12	Adams	Berkshire Arts And Technology Charter Public School (Chatersctioon)	216	6-12	Alexandria	Northside Adolescent School	6	7-12
Decatur	Decatur High School	120	9-12					Andover	Bridges High School	91	12
Gentry	Gentry High School	417	9-12	CheshireDalton	Hoosac Valley High School	692	7-12	Anoka	Iransition Plus High School	206	12
Gravette	Gravette High School	526	9-12		Wahconah Regional High School	628	9-12	Apple Valley	917 Intra-dakota Educational Alternative	85	KG-12

Summary

- Goal: structurally organizing individual tables with necessary context
- Method: a segment-based multiple sequence alignment algorithm for extracting hidden table attributes from the table context in the form of word sequences. Given candidate segments from different heuristics as input, the algorithm seeks an optimal alignment of multiple sequences and determines the proper segmentations.

Key Ideas

- No direct supervision
- Jointly predicts segmentation and alignment
- The same candidate segment from multiple sources more likely to be useful

Candidate Segments

- (SEP) Punctuation/Tag Separators
- (LCS) Longest Common Subsequences
- (WK) Wikification Entities

Table Context

- Web page titles
- Surrounding text of the tables

Segment-based Multiple Sequence Alignment

\square Let $\operatorname{score}\left(s_{1}, s_{2}\right) \in\left\{\lambda_{h_{1}}, \ldots, \lambda_{h_{n}}, \lambda_{g a p}, 0\right\}$ where \boldsymbol{h}_{i} is the \boldsymbol{i} th heuristic.
\square Pair-wise Alignment:
Input: Two sequences of tokens T_{1} and T_{2} of size n_{1} and n_{2}
and two sets of candidate segments S_{1} and S_{2} respectively.
Output: The best alignment of segments in T_{1} and T_{2}.
Initialization: A chart C of size $\left(n_{1}+1\right) \cdot\left(n_{2}+1\right)$ where
$\forall i, C(i, 0)=i \cdot \lambda_{g a p}, \forall j, C(0, j)=j \cdot \lambda_{g a p}$
for $i \leftarrow 1$ to $n_{1}, j \leftarrow 1$ to n_{2} do
for $s_{1} \in S_{1}^{i}, s_{2} \in S_{2}^{i}$ where $S_{l \in\{1,2\}}^{i}=\left\{\right.$ candidate segments ending at $\left.T_{l}^{i}\right\}$ do
Update the chart at

$$
C(i, j) \leftarrow \max \left(C(i, j), \operatorname{score}\left(s_{1}, s_{2}\right)+C\left(i-\left|s_{1}\right|, j-\left|s_{2}\right|\right)\right) ;
$$

end
end
\square For multiple sequences, we keep a profile of existing results and iteratively compute the best alignment between the profile and the rest.

Experiments

Data Set: In a corpus of 130M WebTables grouped by their headers, we sampled 20 groups across 10 different websites (10 tables/group).
Hidden Attribute Extraction: We carry out leave-one-out experiments and evaluate on both cell and column levels.

Cell-level performance
Candidate Segments Precision Recall F1

SEP	0.458	0.260	0.332
LCS	0.630	0.478	0.543
SEP+LCS	0.551	0.484	0.516
LCS+WK	0.650	0.516	0.575
SEP+LCS+WK	0.627	0.703	0.663
Column-level performance			
SEP+LCS+WK	0.387	0.436	0.410

\square A combination of syntactic (LCS,SEP) and semantic (WK) candidates yields the best results.

Hidden Attribute Types: We match the values in the extracted cells to an existing database of isA relations. If a significant number ($\boldsymbol{t} \%$) of values in a column get mapped to a common class in the isA database, we use the class name as the attribute name. The value of t is varied to get the following curve.

